Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 273: 125847, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452590

RESUMEN

This study investigates the contamination of cow milk with aluminum (Al) and its potential health implications, particularly for children. Cow milk samples were collected from both nonexposed and exposed areas in Sindh, based on the source of livestock drinking water (fresh canals and groundwater). An environmental friendly deep eutectic solvent (DES) was used with ultrasonic-assisted dispersive liquid-liquid microextraction (UDLLµE) to enrich trace amounts of Al in whey milk and water samples. The enriched samples were then analyzed using inductively coupled plasma optical emission spectrometry. Certified reference materials were employed to validate the methodology, and the experimental results exhibited acceptable conformity. The DES-based dispersive liquid-liquid microextraction method was environmental friendly, devoid of acids and oxidizing agents, and used safe and inexpensive components for routine trace metal analysis in diverse samples. The resulting data revealed that Al in whey milk samples was observed in the range of 31-45 %, corresponding to (160-270) µg L-1 and (700-1035) µg L-1 in nonexposed and exposed whole cow milk samples, respectively. Additionally, it was observed that milk boiling in Al utensil for 10-20 min enhanced the Al levels from 3 to 8% of its total contents in milk samples.


Asunto(s)
Microextracción en Fase Líquida , Leche , Niño , Bovinos , Animales , Humanos , Solventes/química , Leche/química , Suero Lácteo , Aluminio/análisis , Disolventes Eutécticos Profundos , Microextracción en Fase Líquida/métodos , Límite de Detección
2.
Biol Trace Elem Res ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376729

RESUMEN

Petrochemical facilities, including oil well drilling, are discharging resources of extensive noxious waste into the environment. The workers in different sections might be exposed to vanadium (V) through different routes (groundwater and soil), which is linked with extensive physiological disorders, hypertension, respiratory disorders, anemia, skin, and gastrointestinal disorders. This study determined the contents of V in a biological sample (scalp hair) of workers of different categories (outdoor and office workers) in an oil drilling field in Sindh, Pakistan. The environmental samples, groundwater, bottled mineral water, and soil samples were also analyzed for V. For comparative purposes, the scalp hair of age-matched male subjects residing in domestic areas of Hyderabad city, Pakistan, was also analyzed. Generally, the concentrations of V in groundwater near the oil drilling field and drilled soil illustrated significant variations. The results show that the vanadium concentration in the scalp hair of non-exposed referents (controls) and office workers (exposed referents) was 62% and 45% lower than those observed for outdoor drilling and cleaning mud workers. It was observed that high exposure to V in outdoor workers might be linked with different physiological disorders such as anemia, eye problems, and bronchial disorders.

3.
Environ Sci Pollut Res Int ; 30(14): 41923-41936, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640239

RESUMEN

In present study, the toxic elements, arsenic (As), cadmium (Cd), and lead (Pb), were determined in whey milk samples obtained from various cattle (cow, goat, buffalo, sheep, camel) and human subjects of different areas of Sindh, Pakistan, based on consuming drinking water (exposed area) and surface water (control/non-exposed area). The whey milk was separated from casein by lowering the pH, and heating in an ultrasonic bath at 60 °C for 5 min and centrifuged. The whey milk samples were treated with deep eutectic solvent, prepared from choline chloride-oxalic acid (ChCl-Ox) at different mole ratio. Effects of different parameters on digestion efficiency of whey milk samples, including time and temperature of electric hot plate, mole ratio, and volumes of deep eutectic solvent were examined. The total levels of all selected toxic elements were also detected in whole milk samples of all exposed and nonexposed cattle and human, after acid digestion method. The validity of the proposed method was established by a conventional acid digestion method of selected whey milk samples and spiked certified standards in replicate real whey milk samples. The resulted elements obtained after proposed and conventional heating system were determined by inductively coupled plasma-optical emission spectrometry. The % of all three toxic elements found in whey milk samples were 24 to 50% of their total content in milk samples of different cattle and human. The As, Cd, and Pb contents in cattle and human milk consumed contaminated groundwater was significantly higher (2- to 3-fold) than those values observed for milk samples of cattle, who receive drinking water from fresh canal water (p < 0.01). Estimating the daily intake, hazard quotient and carcinogenic risk for <6 month to 5 years old children, based on the concentrations of toxic elements in milk samples of different cattle and human..


Asunto(s)
Arsénico , Agua Potable , Femenino , Humanos , Bovinos , Niño , Animales , Ovinos , Leche/química , Cadmio/análisis , Suero Lácteo/química , Agua Potable/análisis , Disolventes Eutécticos Profundos , Plomo/análisis , Arsénico/análisis , Medición de Riesgo , Proteína de Suero de Leche , Solventes/química , Digestión
4.
Environ Sci Pollut Res Int ; 30(13): 38650-38662, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36585586

RESUMEN

The aim of the present study is to estimate the different chemical fractionations of copper (Cu) and selenium (Se) in coal samples of different coal mining areas. The Cu and Se bound to various chemical fractions of coal collected from two mining fields of Sindh, Pakistan, have been determined by BCR sequential extraction scheme (BCR-SES). The long duration of the BCR sequential scheme (51 h) was reduced by a time-saving shaking device (ultrasonic bath) termed as ultrasonic-assisted extraction (USE) depending on the same operating conditions and extracting solutions used for BCR sequential extraction scheme. The both trace elements were determined in aquifer water, sampled from different depth of both coal mining fields. In addition, the groundwater of dug well in the vicinity of coal mining areas were also analyzed for Cu and Se using reported extraction methodologies. The partitioning of Cu and Se bound with different chemical fractions of coal was successfully made by proposed USE, within 2 h as compared to long duration of BCR-SES (51 h). The Cu and Se concentrations in acid-soluble fractions of coal samples were > 10%, enhanced by USE extraction procedure than those values gained via BCR-SES (p < 0.01). About 67 to 69% of Cu were found in the first three fractions, whereas their remaining amount corresponding to 31 to 33%, respectively bound with crystalline/residual fraction, while up to 66.1 to 71.1% of total Se contents extracted in three extractable phases, followed up to 28.9 to 33.8% of it was bound with residual phase. The concentrations of Cu and Se in groundwater of different aquifers were found in decreasing order as AQ1 > AQII > AQIII; the same trend was observed for two aquifers of Lakhra coal mining, whereas the groundwater samples have two to three folds higher levels of Se than WHO limit. The Cu levels in water samples were significantly lower than the recommended limit of WHO for drinking water (p < 0.01).


Asunto(s)
Minas de Carbón , Agua Potable , Agua Subterránea , Selenio , Cobre/análisis , Carbón Mineral/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...